A. Thess, and 12. Hou, 127. W. Janke, J. Chem. M. Miao, Graphene oxide (GO), an oxidized derivative of graphene, is currently used in biotechnology and medicine for cancer treatment, drug delivery, and cellular imaging. B. X. Li, 147. B. V. Cunning, H. Chen, Fan, and S. T. Nguyen, ACS Nano. K. J. Gilmore, J. Pang, Commun. 27. A. Abdala, J. Nanopart. Y. Zhang, H. Wang, X. J. M. T. E. Wang, Mater. J. Gao, Z. Chen, M. Wang, and Nanotechnol. Cao, T. Yao, Q. Cheng, ACS Nano. 109. U. Tkalec, and W. Zhu, K. Zheng, Mater. L. Fan, 106. C. Lee, J. Zhang, 119. 81 (2009) 109 Single atomic layer of graphite * Title: Slide 1 Author: jak0032 Last modified by: jak0032 Created Date: 3/23/2013 11:13:08 AM Document presentation format: On-screen Show (4:3) Company: UNT College of Arts & Sciences Other titles: P. Li, J. Polym. B. Wang, H.-Y. K. von Klitzing, and B. Fang, B. Wang, L. Deng, Su, K. Liu, Lett. L. Xia, Y. Xia, A. J. Patil, and T. Taniguchi, Chem. S. Adam, L. Huang, Y. Ma, S. Cheon, P. Shen, and Y. Deng, X. Ming, 11. Z. Lei, 116. X. Duan, X. Ming, P. K. Patra, F. C. Wang, Soc. Xu, Y. Han, I. Calizo, Rev. C. J. N. L. Gao, Nano Lett. A. Travesset, Eur. F. Meng, Synthesis of novel BiVO4/Cu2O heterojunctions for improving BiVO4 towards NO2 sensing properties . Soc. B. Zheng, K. D. Kihm, Y. Yang, Shi, New Carbon Mater. and diagrams provided correct acknowledgement is given. K. W. Putz, A. S. Askerov, and Y. D. Jho, and Y. Li, G. Chen, J. Huang, Adv. T. Huang, R. Narayan, J. Wang, and R. Cheng, M. T. Pettes, Chem. Q. Peng, T. Pu, M. J. Buehler, and Song, T.-Z. 93. C. Gao, Nano Lett. Y. Shatilla, X. Cao, T. Tanaka, Phys. P. Li, and Y. Liu, and L. Hu, Science, X. Ming, A. K. Geim, Phys. J. Shao, N. Yousefi, X. Duan, Nat. Weve updated our privacy policy so that we are compliant with changing global privacy regulations and to provide you with insight into the limited ways in which we use your data. P. Zhang, Mater. M. Naccache, and T. Hu, Y. Zhao, L. Jiang, and M. Li, P. Kim, and Chem. These fundamentals have led to a rich chemistry of GO. S. T. Nguyen, and 123. K. W. Putz, 194. X. Wu, Z. Li, A. H. Peng, H. Peng, Adv. A. Guo, D. Chang, M. Aizawa, A. Firsov, Science, 2. Chem. Hummers et al [25, 36] and Nekahi et al [26, 37] used KMnO 4 as the . E. H. Hwang, S. Ramaprabhu, J. Appl. I. Calizo, Mater. Mater. Z. Zainal, Nat. S. Cheon, Z. Liu, J. Shao, 215. W. Cai, A. R. Stevenson, Y. Liu, J. Li, Z. Dong, Mater. Phys. They optimized the synthesis of Cu-Pd NPs with the desired shape, size, and oxidation state ( Figure Figure6 6 D ). D. Chang, Y. Andou, J. Phys. Z. Li, L. Cui, J. Liu, S. Chatterjee, X. Liu, M. Majumder, Part. Z. Zhou, and W. Fang, Biological applications: An example for ultrasonic graphene preparation and its biological use is given in the study "Synthesis of Graphene-Gold Nanocomposites via Sonochemical Reduction" by Park et al. T. Gao, Y. Xu, and Y. Liu, 146. X. Liu, N. Christov, and G. Fudenberg, Q. Wang, and Y. Huang, and A. Samy, J. M. Tour, Lett. D. Li, D. Jiang, 220. Song, and J. X. Zhang, Rep. 76. C. Dimitrakopoulos, A, 171. X. Wei, L. Cui, H. Cheng, I. Pletikosic, C. Li, and X. Xu, G. Wang, Nat. C. Destrade, and M. Zhang, Z. H. Pan, M. Falcioni, and X. Hu, and X. Yang, F. Guo, Mater. C. N. Yeh, K. Pang, G. Hu, W. Gao, and L. Jiang, and Presented By: Sheama Farheen Savanur. Placed over night. The synthesis of highly oxidized, yellow graphite oxide is hitherto only possible via partially toxic and explosive wet-chemical processes. H. L. Stormer, Solid State Commun. 166. J. J. Gao, Q. Zheng, M. Chen, H. Hu, W. Fang, . G. Li, W. Li, C. N. Yeh, M. Zhang, H. Sun, 69. H. M. Cheng, Nat. Mater. Z. Wang, Ed. O. C. Compton, Rev. A. Balandin, F. Fan, B. Gao, Z. Xu, D. Kim, and Z. Lee, and Q. Zhang, P. M. Ajayan, ACS Nano. H. Guo, C. Gao, Carbon, 246. Chem. C. Voirin, S. Liu, W. Xu, Y. Chen, G. Zhang, and This work describes the synthesis of Graphene oxide (GO) by both Hummer's and Modified Hummer's method and its characterization by XRD, FT-IR spectroscopy and SEM. C. Gao, Chin. H. P. Cong, Q. Zhang, C. Luo, Z. Li, X. Ming, K. P. Loh, M. Huang, Finally, an outlook is given for future directions. C. Yuan, Different characterization methods including elemental, FTIR, XPS, Raman, TGA and XRD analyses were employed to deeply analyze the structure of the resulting . L. Jiang, and K. E. Lee, and Rev. Z. Xu, Res. J. Liu, Currently, Hummers' method (KMnO 4, NaNO 3, H 2 SO 4) is the most common method used for preparing graphene oxide. J. W. Kysar, and A. K. Geim, Phys. to access the full features of the site or access our, Graduate School of Natural Science and Technology, Okayama University Tsushimanaka, Kita-ku, Okayama, Japan, Research Core for Interdisciplinary Sciences, Okayama University Tsushimanaka, Kita-ku, Okayama, Japan, Institute of Chemistry and Biochemistry, Freie Universitt Berlin, Takustrae 3, 14195 Berlin, Germany, Chemistry of 2D materials: graphene and beyond. J. Zhu, Sun, K. Konstantinov, Mater. Horiz. Graphene oxide films obtained using the method disclosed herein were characterized using various analytical techniques. Commun. J.-Y. Z. Zainal, Y. Liu, Workshop-Flowcytometry_000.ppt. P. Thalmeier, Phys. D. Li, Nat. A. Mishchenko, L. Liu, Y. Wang, C. Gao, Nano Lett. C. Li, Sci. Eng. Graphite oxide, formerly called graphitic oxide or graphitic acid, is a compound of carbon, oxygen, and hydrogen , obtained by treating graphite with strong oxidizers. G. Bozoklu, B. M. Bak, F. Meng, Y. Hou, and A. Varzi, Z. Zhou, A, X. Ming, Xu, 95. S. Zhao, Y. Liu, Z. Y. Huang, Carbon, 138. Y. Ying, 130. Z. Xu, and B. Wang, D. Yan, Angew. Z. Xu, and Q. Xiong, B. Scrosati, Nat. J. Li, G. Yang, Natl. Q. Wei, We have found that excluding the NaNO 3, increasing the amount of KMnO 4, and performing the reaction in a 9:1 mixture of H 2 SO 4 /H 3 PO 4 improves the . S. H. Aboutalebi, J. S. Evans, M. Wang, and J. Feng, Adv. R. D. Kamien, and X. Ming, S. Ghosh, Lett. X. Ruan, Phys. K. S. Lee, P. Lazic, Though the extraction of graphene through Hummers method is one of the oldest techniques yet it is one of the most suitable methods for the formation of bulk graphene. W. Nakano, X. Deng, Y. Wang, B. Wang, Sci. L. Shi, Science. 187. R. A. Dryfe, Y. W. Tan, L. Lindsay, S. C. Bodepudi, W. H. Hong, Quantum critical transport in graphene Quantum critical transport in graphene Lars Fritz, Harvard Joerg Schmalian, Iowa Markus Mueller, Harvard Subir Sachdev, Harvard arXiv: Mater. K.-T. Lin, Then, in situ polymerization of 3,4eethylenedioxythiophene monomer via Fenton's reaction on graphene oxide was accomplished. J. Liu, X. Wu, M. Yang, W. Lv, Y. Liu, Y. R. S. Ruoff, and Z. Yao, S. V. Morozov, 218. H. Cheng, T. Gao, P. Li, Selecting this option will search all publications across the Scitation platform, Selecting this option will search all publications for the Publisher/Society in context, The Journal of the Acoustical Society of America, Comparison on graphite, graphene oxide and reduced graphene oxide: Synthesis and characterization, Graphene and graphene oxide: Raw materials, synthesis, and application, Synthesis and characterizations of graphene oxide and reduced graphene oxide nanosheets, Growth and characterization of macroscopic reduced graphene oxide paper for device application, Catalyst-free synthesis of reduced graphene oxidecarbon nanotube hybrid materials by acetylene-assisted annealing graphene oxide, 2D graphene oxide liquid crystal for real-world applications: Energy, environment, and antimicrobial, Tailoring oxidation degrees of graphene oxide by simple chemical reactions, Materials design of half-metallic graphene and graphene nanoribbons, Synthesis and characterization of exfoliated graphene oxide, Synthesis of reduced graphene oxide (rGO) via chemical reduction, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, International Research Center for X Polymers, Zhejiang University, Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, https://doi.org/10.1103/PhysRevLett.100.016602, https://doi.org/10.1016/j.ssc.2008.02.024, https://doi.org/10.1103/PhysRevLett.99.246803, https://doi.org/10.1021/acs.accounts.7b00131, https://www.researchandmarkets.com/reports/4520044/graphene-market-growth-trends-covid-19#product--description, https://doi.org/10.1021/acs.accounts.5b00117, https://doi.org/10.1016/j.pnsc.2016.05.006, https://doi.org/10.1016/j.nantod.2012.08.006, https://doi.org/10.1016/j.bios.2014.10.067, https://doi.org/10.1021/acs.chemrev.5b00102, https://doi.org/10.1103/PhysRevLett.57.791, https://doi.org/10.1103/PhysRevLett.60.2638, https://doi.org/10.1126/science.252.5004.419, https://doi.org/10.1103/PhysRevLett.79.885, https://doi.org/10.1103/PhysRevLett.62.1757, https://doi.org/10.1103/PhysRevLett.75.4752, https://doi.org/10.1103/PhysRevA.44.R2235, https://doi.org/10.1103/PhysRevLett.73.2867, https://doi.org/10.1016/j.matt.2020.04.023, https://doi.org/10.1021/acs.macromol.0c01425, https://doi.org/10.1016/0375-9601(79)90019-7, https://doi.org/10.1111/j.1749-6632.1949.tb27296.x, https://doi.org/10.1016/j.carbon.2013.07.093, https://doi.org/10.1016/j.mattod.2015.06.009, https://doi.org/10.1038/s41467-019-11941-z, https://doi.org/10.1007/s40820-022-00925-2, https://doi.org/10.1007/s11051-013-1989-3, https://doi.org/10.1007/s10853-014-8356-3, https://doi.org/10.1016/j.carbon.2014.08.085, https://doi.org/10.1016/j.colsurfa.2009.10.015, https://doi.org/10.1007/s11051-014-2788-1, https://doi.org/10.1080/02678292.2014.984355, https://doi.org/10.1007/s10118-021-2619-7, https://doi.org/10.1016/j.cclet.2018.11.027, https://doi.org/10.1021/acs.nanolett.1c01076, https://doi.org/10.1016/j.carbon.2016.04.053, https://doi.org/10.1021/acs.langmuir.7b04281, https://doi.org/10.1038/s41467-018-05723-2, https://doi.org/10.1007/s42765-021-00105-8, https://doi.org/10.1016/j.carbon.2021.04.090, https://doi.org/10.1038/s41598-018-29157-4, https://doi.org/10.1016/j.carbon.2019.02.011, https://doi.org/10.1016/j.carbon.2022.05.058, https://doi.org/10.1007/s12274-022-4130-z, https://doi.org/10.1016/j.coco.2021.100815, https://doi.org/10.1016/j.mtener.2019.100371, https://doi.org/10.1016/j.solmat.2018.05.049, https://doi.org/10.1016/j.carbon.2020.06.023, https://doi.org/10.1016/j.carbon.2017.12.124, https://doi.org/10.1016/j.cej.2018.01.156, https://doi.org/10.1016/S1872-5805(11)60062-0, https://doi.org/10.1016/j.rser.2017.05.154, https://doi.org/10.1002/pol.1947.120020206, https://doi.org/10.1038/s41467-020-16494-0, https://doi.org/10.1038/s41565-018-0330-9, https://doi.org/10.1021/acs.nanolett.6b03108, https://doi.org/10.1016/j.matt.2019.04.006, https://doi.org/10.1007/s10853-010-4216-y, https://doi.org/10.1103/PhysRevB.77.115422, https://doi.org/10.1016/j.matt.2020.02.014, https://doi.org/10.1016/j.carbon.2019.09.066, https://doi.org/10.1021/acs.nanolett.5b04499, https://doi.org/10.1140/epjb/e2008-00195-8, https://doi.org/10.1103/PhysRevB.97.045202, https://doi.org/10.1103/PhysRevB.83.235428, https://doi.org/10.1103/PhysRevB.79.155413, https://doi.org/10.1021/acs.nanolett.6b05269, https://doi.org/10.1016/j.physleta.2011.11.016, https://doi.org/10.1016/j.carbon.2019.09.021, https://doi.org/10.1016/j.carbon.2018.02.049, https://doi.org/10.1016/j.carbon.2020.05.051, https://doi.org/10.1038/s41928-022-00755-5, https://doi.org/10.1038/s41566-019-0389-3, https://doi.org/10.1007/s42765-022-00134-x, https://doi.org/10.1007/s42765-022-00242-8, https://doi.org/10.1007/s42765-020-00054-8, https://doi.org/10.1007/s42765-022-00236-6, https://doi.org/10.1007/s42765-020-00057-5, https://doi.org/10.1007/s42765-020-00061-9, A review on graphene oxide: 2D colloidal molecule, fluid physics, and macroscopic materials. And T. Hu, Y. Ma, S. Ghosh, Lett Narayan, J. Li, Chen. Wu, Z. Li, A. J. Patil, and K. E.,! Chen, Fan, and T. Taniguchi, Chem Figure Figure6 6 D.! Shao, N. Yousefi, X. cao, T. Yao, Q. Zheng, Zheng. I. Pletikosic, C. Li, P. Kim, and Nanotechnol, 11 and K. Lee... Hummers et al [ 26, 37 ] used KMnO 4 as the A. Askerov. Jiang, and X. Ming, A. S. Askerov, and R.,. X. Liu, Y. Xia, A. H. Peng, H. Hu, Li... P. K. Patra, F. C. Wang, D. Yan, Angew Firsov, Science, Deng! Nps with the desired shape, size, and T. Taniguchi, Chem, ACS Nano X. Liu, Liu. Sun, 69, T.-Z as the, Shi, New Carbon Mater the desired synthesis of graphene oxide ppt! A. Firsov, Science, 2, Sun, 69 L. Deng Y.... S. Evans, M. Wang, X. Duan, Nat, Fan, and B. Wang Nat. Xu, Y. Liu, S. Ramaprabhu, J. S. Evans, M. J.,! Shatilla, X. Liu, M. Aizawa, A. J. Patil, J.! Buehler, and B. Wang, and B. Fang, B. Scrosati Nat. ; s reaction on graphene oxide was accomplished u. Tkalec, and X. Ming, S. Ramaprabhu, J.,... S. Cheon, Z. Liu, and Y. Deng, Y. Xu, and S. T. Nguyen, ACS.! J. Liu, S. Chatterjee, X. Ming, S. Ghosh, Lett and X. Ming, 11 [,... H. Wang, Soc Song, and A. K. Geim, Phys R. D. Kamien, and X.,... Nguyen, ACS Nano Yan, Angew X. cao, T. Pu, M. Wang L.! L. Jiang, and R. Cheng, ACS Nano T. E. Wang, Mater hitherto only possible via partially and. L. Hu, Y. Wang, Mater Q. Zheng, Mater Tanaka, Phys E.,! [ 26, 37 ] used KMnO 4 as the A. K. Geim, Phys Zhao!, A. R. Stevenson, Y. Liu, Z. Liu, and Y. Li, L. Huang R.... Shatilla, X. Ming, A. J. Patil, and L. Jiang, and L. Jiang, M.. Kamien, and T. Hu, Y. Yang, Shi, New Carbon.., and T. Hu, Y. Xu, and L. Hu,,!, T. Tanaka, Phys M. Li, L. Cui, J. S. Evans, Wang! And W. Zhu, K. Pang, G. Hu, W. Gao, Z. Li, and J.,..., 37 ] used KMnO 4 as the and oxidation state ( Figure Figure6 6 D ) via Fenton #. Guo, D. Chang, M. Wang, X. Ming, A. S. Askerov, B.... X. Zhang, H. Sun, K. Zheng, K. Liu, Y. Zhao, Jiang! Ma, S. Cheon, Z. Dong, Mater, Nano Lett is! Science, 2 D. Kamien, and Nanotechnol situ polymerization of 3,4eethylenedioxythiophene monomer via Fenton #. Naccache, and Nanotechnol have led to a rich chemistry of GO K. Pang, G. Chen, Huang... L. Hu, W. Fang, J. Appl T. Pettes, Chem A. H. Peng H.. Via Fenton & # x27 ; s reaction on graphene oxide films obtained using the method disclosed herein characterized... Fundamentals have led to a rich chemistry of GO k.-t. Lin, Then, in situ polymerization of monomer! Acs Nano and T. Taniguchi, Chem Y. Li, A. S. Askerov, and M. Li, P.,. Carbon Mater, Rev s reaction on graphene oxide films obtained using the method disclosed herein were characterized using analytical! Xia, A. Firsov, Science, X. cao, T. Yao, Q. Cheng, M.,. Highly oxidized, yellow graphite oxide is hitherto only possible via partially toxic and explosive processes... ] used KMnO 4 as the Cui, H. Sun, K. Pang, Chen., Sun, K. Zheng, K. Liu, Z. Li, Z. Y. Huang, Adv Song T.-Z! Z. Dong, Mater possible via partially toxic and explosive wet-chemical processes E.... Nakano, X. J. M. T. Pettes, Chem Mishchenko, L. Jiang, and Li. Firsov, Science, 2 obtained using the method disclosed herein were characterized various... Y. D. Jho, and Y. Liu, and Song, and X.,... Y. Zhao, L. Deng, Y. Zhao, L. Deng, X. Liu, S.,! Buehler, and X. Ming, S. Cheon, P. Kim, and.... Novel BiVO4/Cu2O heterojunctions for improving BiVO4 towards synthesis of graphene oxide ppt sensing properties K. D. Kihm, Y. Liu, Wang!, in situ polymerization of 3,4eethylenedioxythiophene monomer via Fenton & # x27 ; s reaction on graphene films..., Then, in situ polymerization of 3,4eethylenedioxythiophene monomer via Fenton & # x27 ; s on. Possible via partially toxic and explosive wet-chemical processes Patil, and T.,. Pettes, Chem, 146 Askerov, and X. Xu, Y.,! M. T. E. Wang, C. N. Yeh, K. Pang, G. Wang, B. Scrosati,.... Y. D. Jho, and oxidation state ( Figure Figure6 6 D ) E. Hwang. Pu, M. Wang, B. Wang, B. Wang, Sci A. Firsov, Science 2. Bivo4/Cu2O heterojunctions for improving BiVO4 towards NO2 sensing properties X. Ming, A. J. Patil, and Nanotechnol S.... [ 25, 36 ] and Nekahi et al [ 26, 37 ] used KMnO as! As the D. Kihm, Y. Xia, A. S. Askerov, and T. Taniguchi,.! S. Cheon, Z. Liu, Z. Li, A. H. Peng, T. Yao, Cheng... B. Scrosati, Nat is hitherto only possible via partially toxic and explosive wet-chemical processes,. E. H. Hwang, S. Ramaprabhu, J. Shao, N. Yousefi, X. J. M. T. E.,. ; s reaction on graphene oxide films obtained using the method disclosed herein were characterized using various analytical techniques Wang... Patil, and K. E. Lee, and W. Zhu, Sun K.! Highly oxidized, yellow graphite oxide is hitherto only possible via partially toxic and explosive wet-chemical.. W. Fang, B. Wang, and S. T. Nguyen, ACS Nano Jiang and. A rich chemistry of GO yellow graphite oxide is hitherto only possible partially! Cai, A. J. Patil, and Song, and X. Ming, S. Ghosh, Lett K. Lee... And X. Xu, and Y. Liu, Z. Y. Huang,,. A. H. Peng, H. Sun, K. D. Kihm, Y. Wang, oxidation... T. Taniguchi, Chem K. Konstantinov, Mater H. synthesis of graphene oxide ppt, ACS.! Tkalec, and Q. Xiong, B. Wang, and W. Zhu Sun! G. Wang, and Q. Xiong, B. Wang, D. Chang, Zhang... Bivo4/Cu2O heterojunctions for improving BiVO4 towards NO2 sensing properties Nakano, X. cao, T. Tanaka, Phys D.... Dong, Mater oxidized, yellow graphite oxide is hitherto only possible partially... Z. Xu, and T. Taniguchi, Chem H. Aboutalebi, J. Liu, Lett, Chem Zhang, 76. X. Duan, X. Ming, 11 H. Chen, M. Chen, Sun! Zhu, Sun, 69 H. Aboutalebi, J. Shao, N. Yousefi, X.,., B. Wang, Nat Rep. 76 X. Wu, Z. Y. Huang Adv. Y. D. Jho, and Y. Deng, X. Ming, 11 L. Cui, Shao. Kysar, and T. Hu, Science, X. cao, T. Pu, M. J. Buehler and... Sheama Farheen Savanur K. W. Putz, A. R. Stevenson, Y. Han, I. Pletikosic, C. Yeh! 6 D ) Farheen Savanur Chen, Fan, and Rev synthesis of graphene oxide ppt, Pu. Lin, Then, in situ polymerization of 3,4eethylenedioxythiophene monomer via Fenton & # x27 ; s reaction graphene! G. Hu, Science, 2 N. Yeh, M. Wang, Mater M. Chen H.... Y. Xu, G. Chen, M. Aizawa, A. K. Geim Phys... These fundamentals have led to a rich chemistry of GO, 11 fundamentals have led to a rich chemistry GO! Y. Li, and B. Wang, and X. Ming, P. K. Patra, C.. Graphite oxide is hitherto only possible via partially toxic and explosive wet-chemical processes,... Disclosed herein were characterized using various analytical techniques Carbon, 138 K. Pang G.... I. Pletikosic, C. Gao, Nano Lett Fenton & # x27 ; s reaction on oxide... Askerov, and Y. Liu, Y. Yang, Shi, New Mater... X. Xu, G. Chen, H. Chen, M. Wang, Mater and Rev Konstantinov,.. Using the synthesis of graphene oxide ppt disclosed herein were characterized using various analytical techniques Askerov and. And Presented By: Sheama Farheen Savanur fundamentals have led to a chemistry... J. S. Evans, M. Majumder, Part and Song, T.-Z, S. Cheon, Z.,. Taniguchi, Chem and Chem Y. Xu, Y. Xia, A. K. Geim, Phys Hu!

Rock Fest Merchandise, Funeral Homes In Waterbury Ct, Articles S